〔研究ノート〕

スキー滑走時の下肢関節運動とスキー板ひずみの計測

齋藤健治·前田 寛

名古屋学院大学/大分大学名誉教授

要 旨

モーションセンサとひずみゲージを用いて、スキー滑走時の下肢関節運動とスキー板のたわ みを計測した。右ブーツ内側と右大腿外側に六軸のモーションセンサを装着し、スキー滑走時 の下腿部と大腿部の角速度を計測した。また、右スキー表面に三軸ひずみゲージと単軸ひずみ ゲージをそれぞれ2枚ずつ貼付し、滑走時のスキー板のたわみを検出した。実験参加者には平 均斜度14度の斜面で、大回りターンと小回りターンで滑走してもらった。計測した角速度とひ ずみはフィルタ処理を施した後、それぞれのパワースペクトルを求め、さらに相互相関関数と 自己相関関数を求めることで、滑走時の運動の特徴やスキーのたわみとの関係を調べた。

キーワード:下肢関節運動,角速度,ひずみ,相互相関関数,周波数

Measurements for joint motion of lower limb and strain of ski during ski-turn

Kenji SAITOU, Hiroshi MAEDA

Nagoya Gakuin University/ Oita University

はじめに

スキー計測は、自然を利用した斜面の移動に 加え,気候,滑走斜面の雪質や状況(荒れ具合) など種々の影響を受けるため、計測条件を安定 させるという点において、その難度は高いとい える。そのような中でも、滑走中のスキーヤー によるスキー板への圧力はスキーのターン軌跡 や回転に直接関わるため、その計測に焦点を当 てた研究が主流となっている「1-4.6-9.13. 14]。一方で、スキー板そのものの振動特性を 分析した研究 [5, 10], スキーヤーの運動学 解析や筋活動解析を行った研究[12]があるが、 道具の反応特性、道具とスキーヤーのインター フェース、スキーヤーの運動のすべてを計測対 象とすることは容易ではない。本研究では、ス キーヤーの運動をモーションセンサにより、ス キーの応答(たわみ)をひずみゲージ[11] により計測し、滑走中のそれぞれの振る舞いと それらの間の関係について計測分析することを 目的とした。

方法

1. 対象および滑走環境

SAJ(全日本スキー連盟)準指導員の資格を 持つ男性1名を対象とし,最大斜度20度,平 均斜度14度のコースを大回りターンでは左右2 回ずつ,小回りターンでは左右7回ずつターン してもらった。当日の気温は3~5℃でゲレン デの雪質は柔らかめであった。

2. 実験試技および計測

2-1. モーションセンサによる計測

6軸モーションセンサ (スポーツセンシング 社製, 38 mm×53 mm×11 mm) 2個を, それ ぞれ右ブーツ内側(センサ1)と,右大腿外側(セ ンサ2)に装着した(図1)。センサ1のx軸回 りの角速度は股関節の内転・外転運動や身体の 左右傾を反映した下腿部の角速度, v軸回りの 角速度は股関節の内旋・外旋運動や身体長軸回 りの回転を反映した下腿部の角速度, z軸回り の角速度は足関節の背屈・底屈(下腿部の前傾・ 後傾)を反映した角速度となる(図2a)。また, センサ2のx軸回りの角速度は股関節の内転・ 外転運動や身体の左右傾を反映した大腿部の角 速度, v軸回りの角速度は股関節の内旋・外旋 運動や身体長軸回りの回転を反映した大腿部の 角速度, z軸同りの角速度は股関節の屈曲・伸 展を反映した大腿部の角速度となる(図2b)。 これらの角速度はサンプリング周波数1kHz, 精度16 bit で一旦モーションセンサ内のメモリ に格納し、実験後、パソコン内に取り込んだ。

2-2. ひずみゲージによるスキー板のたわみ計測
三軸型ロゼットゲージ(KFG-1-120-D17-11, ゲージ長1 mm, 共和電業)と単軸ひずみ
ゲージ(KFG-1N-120-C1-11, ゲージ長1 mm, 共和電業)を,スキー板表面の4カ所(右
スキーの両エッジ側に2カ所ずつ)に接着剤で
貼付した(図3b)。貼付したゲージチャンネル
は計8チャンネルであった(図3a)。

8つのひずみゲージの信号はブリッジコネク タ (DB-120C-2, 共和電業)を介して, ひず みアンプ (シグナルコンディショナCDV-400B, アンプユニットCD-10B, 共和電業, 応答周波数DC~2.5kHz) で増幅した。増幅し た信号は精度16bit, サンプリング1kHzでAD 変換しデータロガー (DSPワイヤレスアナロ グ電圧データロガー,スポーツセンシング社製) に取り込んだ。ブリッジコネクタはベルトに固 定して腰に巻き, アンプとデータロガーをケー

図1 モーションセンサの装着位置と軸の説明図。モーションセンサ1を右ブーツ内側 に、モーションセンサ2を右大腿外側に装着した。

図2 (a) 右ブーッ内側部に装着したモーションセンサ1により計測され る下腿部の運動と,(b) 右大腿外側部に装着したモーションセン サ2により計測される大腿部の運動。

名古屋学院大学論集

 図3 (a) 貼付したひずみゲージとデータ取り込みチャンネル。(b) ひずみゲージの貼付位置。ブーツセンターから先端方向58 cmの位置に三軸ゲージ, 37 cmの位置に単軸ゲージを貼付した。三軸ゲージはスキー板長軸方向と 直交する方向および45度方向のひずみを,単軸ゲージはスキー板長軸方向 のひずみを検出。

ブル接続しバックパックに入れ,背負った状態 で滑った(図1)。

モーションセンサとデータロガーの制御は ノートブックパソコンの制御ソフトを用いて無 線通信で同期した状態で行った。ただし無線に よるデータ取得をより確実なものにするため, 験者がパソコンを持ち,対象の後方を滑りなが らデータ収集した。

3. 信号処理,分析

図4と図5に大回りターン滑走時と小回り ターン滑走時のモーションセンサで計測した角 速度とひずみゲージで計測したひずみデータの パワースペクトルを示す。いずれもターン運動 に応じた周波数成分を確認することができ、こ れらを元に、モーションセンサで計測したデー タは高域遮断3Hz、ひずみゲージ計測したデー タは高域遮断5Hzのローパスフィルタ(4次の バタワース型)をかけてノイズ成分を除去した。

その後,改めてパワースペクトルを求めて運動の周波数とひずみの周波数を確認し,さらに, 角速度波形間,ひずみ波形間および角速度波形 とひずみ波形間の相互相関関数を求めた。

図4 大回りターン時にモーションセンサにより計測した角速度生波形とひずみゲージにより計測した ひずみ生波形のパワースペクトル。

図5 小回りターン時にモーションセンサにより計測した角速度生波形とひずみゲージにより計測した ひずみ生波形のパワースペクトル。

結果

1. ターン中の足関節と膝関節の運動

図6に大回りターン時(左右2回ずつ)に,

センサ1とセンサ2により計測した(a)下腿部 と(b)大腿部の角速度を示す。左ターン時には 下腿部,大腿部ともに外転・内旋運動の角速度, 右ターン時には内転・外旋運動の角速度が認め

(a) 下腿部の運動

(b) 大腿部の運動

図6 大回りターン時の下腿部と大腿部の運動の角速度。上部にターン方向の目安を示す。

 (a) 下腿部の運動
 (b) 大腿部の運動

 図7 小回りターン時の下腿部と大腿部の運動の角速度。上部にターン方向の目安を示す。

られた。ただし、内外転の角速度は振り幅が大 きくなる下腿部の方が大きい。また、右ターン の後半に下腿部の後傾動作(足首の緩み)が認 められた(図6a下段破線丸)。それは、股関節 屈曲(大腿部が寝る方向の動き)の角速度のタ イミングで起こっており(図6b下段破線丸)、 山足(内足、山スキー)が前に出ることによる と考えられる。また、いわゆるストレッチング 動作と認められる股関節伸展の角速度は左ター ンのみで認められた(図6b下段↑で示す)。

小回りターンにおいても上記の傾向は同じで あるが、大回りよりリズミックであり、スキー の振りが早くなる分、すべての角速度が大きく なった(図7)。

2. ターン中のスキー板のひずみ

図8,9に大回りターン時と小回りターン時 のスキー板表面ひずみの波形を示す。ひずみの 特徴は大回りターン小回りターンで概ね共通し ており,全体的特徴として,ひずみ変化は小回 りターンの方が大きく,両ターンともに圧縮ひ ずみの方が多く見られたが,振動的にひずみが 変化する中で引っ張りひずみも認められた。

1chと5ch,4chと8chはスキー板長軸方向の ひずみをインエッジ側とアウトエッジ側で計測 しているため,滑走時に違いはほとんど見られ なかった。また、3chと7chはともにそれに直 交する方向のひずみを計測しているため,同様 に滑走時の違いはほとんど見られなかった。 1chと4ch,あるいは5chと8chは、ブーツから の距離が異なるだけでスキー板長軸のひずみ波 形であるため、ひずみの大きさはブーツに近い 側(4ch,8ch)が大きいものの,ほぼ同位相の 変化が認められた。

2chと6chは、上記と45度ずれた方向のひず みであり、かつ互いに90度ずれているため、

図8 大回りターン時のスキー板のひずみ。上部にターン方向の目安を示す。

この間でのみ滑走時のひずみに違いが認められ た。大回りターンでは右ターン後半から左ター ン前半の期間で両者の位相が逆転しており,左 ターン後半から右ターン前半ではひずみ変化が 少ない点で共通していた。小回りターンでも同 様であるが6chの引っ張りひずみが大きく現れ ていた。

3. 角速度とひずみの周波数成分

図10,11に角速度とひずみ波形のパワース ペクトルを示す。大回りターンでは、下腿部も 大腿部も0.19Hzが主成分となっていた。スキー 板ひずみの方が広い帯域の周波数成分が認めら れたが、同様に0.19Hzのパワーが大きく、次 いで0.88Hz,0.38Hz,0.63Hz,2.12Hzで大き なパワーが認められた。下腿部と大腿部の動き の周波数とスキー板の周波数から、上下動等の 動きがスキー板のたわみに影響していたと考え られるが,それより高い周波数成分については 現状不明である。小回りターンでは,下腿部, 大腿部の動きは0.56Hzが主成分となっており, スキー板のひずみでは,同周波数成分も認めら れるが,その倍周波数の1.1Hzが主成分となっ ていた。

角速度とひずみの相互相関関数、ひずみの 自己相関関数

図12,14に、大回りターン時と小回りター ン時の角速度間あるいは角速度とひずみ間の相 互相関関数について、特徴的なものを示す。ま た図13,15には、大回りターン時と小回りター ン時のひずみ間の相互相関関数とひずみの自己 相関関数について、特徴的なものを示す。また、 表1に大回りターン時の表2に小回りターン時 の相互相関関数値絶対値の最大(相互相関係数) と時間差を示す。大回りターンは±4sの時間 差,小回りターンは±2 sの時間差で示している。また自己相関関数は偶関数であるため,そ

れぞれ0.0~8.0 sと0.0~4.0 sの時間差で示している。

図10 大回りターン時の下腿部と大腿部の運動の角速度波形,およびスキー板ひずみ波形の周波数成分

図11 小回りターン時の下腿部と大腿部の運動の角速度波形,およびスキー板ひずみ波形の周波数成分

図12 大回りターン時の下腿部と大腿部の運動の角速度やスキー板ひずみ間の相 互相関関数。●印は相関係数最大値(絶対値)の時間差を示す。

大回りターン(図12)では下腿部内外転角 速度と下腿部・大腿部内外旋角速度が時間差 0.1~0.3 sで位相は逆転しているが相関が高 かった(x1-y1, x1-y2)。つまり,下腿部の内 外転角速度が先行して,0.1~0.3 s遅れて下腿 部・大腿部が外内旋角速度のピークを迎えてい た。下腿部と大腿部の内外転角速度は同位相で あるが大腿部が0.9 s程度先行していた(x1x2)。これは、クロスオーバー的な重心移動に より身体の左右傾の影響であると考えられる。 また,下腿部の内外転角速度はひずみ6chの圧 縮ひずみに1.0 s程度先行していた(x1-6ch)。 板への踏み込み前1s程度,内外転運動が先行 していたと考えられる。下腿部と大腿部の内外 旋角速度はほぼ同期して(時間差0.08 s)かつ 同位相であった(y1-y2)。下腿部の内外旋角 速度は大腿部の内外転角速度に0.6 s程度先行 していた(y1-x2)。大腿部の内外転角速度は 大腿部の内外旋角速度と時間差1.32 sで位相が 逆転していた(x2-y2)。つまり,大腿部内外 転運動に1.32 s遅れて大腿部外内旋運動がピー クを迎えていた。また,大腿部の内外転角速度 は6chのひずみに0.4 s遅れてピークを迎えて いた(x2-6ch)。

図13 大回りターン時のスキー板ひずみ間の相互相関関数(上)と自己相関関数 (下)。

互相関係数最大値(絶対値)と時間差			
	時間差〔s〕	相関係数	
x1-y1	0.277	-0.843	
x1-x2	-0.898	0.637	
x1-y2	0.103	-0.879	
x1-ひずみ6	1.012	-0.666	
y1-x2	0.613	0.602	
y1-y2	-0.083	0.913	
x2-y2	1.32	-0.651	
x2-ひずみ6	-0.393	0.646	
ひずみ1-2	0.001	0.512	
ひずみ1-3	-0.001	-0.920	
ひずみ1-4	0.019	0.768	
ひずみ2-6	-0.106	-0.614	

表1 大回りターン時のセンサ、ひずみゲージ間の相 互相関係数最大値(絶対値)と時間差

ひずみ間の相互相関関数は、1-2間と1-4間 で同期した比較的高い相関が認められた(図 13)。1-3間では同期しているが位相は逆転し ていた。これらは時間差が大きくなった場合の 相関が低く、ある時点でのひずみの影響が長く 残らないことを示している。それに対し、2-6 間のひずみは時間差0付近で位相が逆転してい るのに加え、比較的長周期で振動的なのが特徴 的であった。これは、自己相関関数(図13下 のひずみ2と6)や図12の下腿部と大腿部の角 速度との相関が高いことからもわかる。

小回りターン(図14)においても,角速度間, 角速度ひずみ間の相関関係と時間差関係は大回 りターンと同様な傾向で,相関係数は比較的高 く,時間差は小さかった。

下腿部内外転角速度と下腿部・大腿部内外旋 角速度が時間差0.05~0.2 sで位相は逆転して いるが相関が高かった(x1-y1, x1-y2)。つまり, 同様に下腿部の内外転角速度が先行して,0.05 ~0.2 s遅れて下腿部・大腿部が外内旋角速度 のピークを迎えていた。下腿部と大腿部の内外 転角速度は同位相であるが大腿部が0.1 s程度 先行していた(x1-x2)。また,大回りターン と異なりひずみ6chが引っ張りひずみで下腿部 の内外転角速度に0.56 s先行していた(x1-6ch)。下腿部と大腿部の内外旋角速度(y1y2),および下腿部の内外旋角速度と大腿部の 内外転角速度(y1-x2)の位相,時間差関係は 大回りターンと概ね同様であった。下腿部の内 外旋角速度は0.15 s程度,ひずみ6chの引っ張 りひずみに先行していた。大腿部の内外転角速 度と大腿部の内外旋角速度(x2-y2)の関係,

図14 小回りターン時の下腿部と大腿部の運動の角速度やスキー板ひずみ間の相 互相関関数。●印は相関係数最大値(絶対値)の時間差を示す。

大腿部の内外転角速度とひずみ6ch(x2-6ch) との関係はx2-y2の時間差が小さいこと以外は 概ね大回りターンと同様の傾向であった。下腿 部の内外旋角速度とひずみ6ch(y1-6ch)の関 係,大腿部の内外旋角速度とひずみ6ch(y26ch) との関係は、時間差が0.15~0.3 sで、いずれも内外旋角速度が先行していた。

ひずみ間の相互相関関数,ひずみの自己相関 関数の傾向は大回りターンと同様であった(図 15)。

図15 小回りターン時のスキー板ひずみ間の相互相関関数(上)と自己相関関数 (下)。

	時間差〔s〕	相関係数
x1-y1	0.19	-0.874
x1-x2	-0.112	0.950
x1-y2	0.054	-0.968
x1-ひずみ6	-0.559	0.886
y1-x2	0.603	0.833
y1-y2	-0.144	0.890
y1-ひずみ6	0.148	0.826
x2-y2	0.182	-0.903
x2-ひずみ6	-0.433	0.898
y2-ひずみ6	0.274	0.850
ひずみ1-2	0.004	0.485
ひずみ1-3	-0.002	-0.769
ひずみ1-4	0.019	0.769
ひずみ2-6	-0.024	-0.588

表2 小回りターン時のセンサ,ひずみゲージ間の相 互相関係数最大値(絶対値)と時間差

-35 -

考察

スキーのターン運動は周期運動であるため. ターン運動時の関節運動やスキー板のたわみ運 動を,その周波数特性や相関の強さとその時間 差の観点で分析しやすい。この視点は、個々の スキーヤーの、例えば、どの部位から運動を起 こしてターンを開始しているか、またその時の 部位間の位相差に現れる技術など、ターン運動 時の技術論に介入できる手法となるかもしれな い。スキー滑走時の下肢関節運動、足底あるい はブーッ下の圧力などについていくつか報告さ れているが [1-4, 6-9, 13, 14], 個々のターン 技術に踏み込んだ計測・分析には発展していな い。本研究において、個々のスキーヤーのター ン運動時の技術論にも介入できる分析方法とし て今後のスキー分析の可能性を示すことができ たといえる。

しかしながら、それでも今後の課題は多く、 種々の問題が挙げられる。相関分析は2つの信 号間の関係だけを個別に見ているため、3つ以 上の運動間、あるいは複数の運動とひずみ間の 関係を同時に分析する手法が求められる。今回 は関節運動として下腿部と大腿部に焦点を当て たが、体幹の運動にも着目する必要があるかも しれない。また、今回は左右のターンをまとめ て解析対象としたが、左右の脚はターン方向が 変われば運動の役割が変わるため、分離して解 析する方が望ましいといえる。そのためには、 センサ計測と同期した動画撮影(ドローンによ る上空からの撮影など)が必須になると思われ る。その他、ひずみゲージの最適な貼付位置の 検討、雪質との関係により変化するスキー板た わみ量の同定,ひずみとブーッ下圧力との関係, 温度の影響、雪質の定量化など、検討材料は多 い。

参考文献

- Bon, I., Očić, M., Cigrovski, V., Rupčić, T., and Knjaz, D. (2021) What are kinematic and kinetic differences between short and parallel turn in alpine skiing?, Int. J. Env. Res. Pub. Health, 18, 3029.
- [2] 土岐 仁,穂苅真樹,小林義隆(2005)スキー 滑走フォームの運動解析と計測に関する研究, 日本機械学会[No.05-15] Dynamics and Design Conference 2005 CD-ROM 論文集, 515.
- [3] Falda-Buscaiot, T., Hintzy, F., Rougier, P., Lacouture, P., Coulmy, N., (2017) Influence of slope steepness, foot position and turn phase on plantar pressure distribution during giant slalom alpine ski racing, Plos One, 12(5): e0176975.
- [4] 廣瀬 圭, 土岐 仁, 近藤亜希子(2012) スキー ヤーの関節角度・滑走速度計測によるスキー・ ターンの運動解析に関する研究, スポーツ産業 学研究, 22(1): 1-8.
- [5] 北沢俊二,風間 武,島田享久,小林光征(1999) スキー板のターンにおける振動特性の実験的評価法,スポーツ産業学研究,9(2):23-33.
- [6] 近藤亜希子,土岐 仁,廣瀬 圭(2013)実滑 走におけるスキーヤーの3次元姿勢計測とター ンの運動解析に関する研究,スキー研究, 10(1):19-26.
- [7] 近藤亜希子,土岐 仁,廣瀬 圭,永作 清 (2013)実滑走計測によるスキーヤーの下肢筋 張力推定と運動解析に関する研究,スキー研究, 10(1): 27-34.
- [8] 近藤亜希子,土岐 仁,廣瀬 圭 (2014) 実滑 走計測によるカービングターン・スキッディン グターンの運動力学解析に関する研究,スキー 研究, 11(1): 3-12.
- [9] Matsumura, S., Ohta, K., Yamamoto, S., Koike, Y., and Kimura, T. (2020) Convenient method for detecting ski-turn features with inertial and plantar pressure sensors, MDPI

Proceedings, 49(24).

- [10] 坂田敏行(1993) スキー用具のダイナミックス, 精密工学会誌, 59(10): 17-21.
- [11] 佐藤裕久(1986) ダイナミックセンサとしての ひずみゲージー高速・柔構造型材料試験機への 適用,精密工学会誌,52(4):24-28.
- [12] 塩野谷明, 監物勇介, 西條暁里 (2013) スキー
 実滑走中の機会力学振動およびヒトEMG
 (Electromyography)の同時計測システムによるスキー板の振動とヒトEMGの相互相関分析の試み, スキー研究, 10(1): 1–11.
- [13] Supej, M., Ogrin, J., Šarabon, N., and Holmberg, H.-C. (2020) Asymmetries in the technique and ground reaction forces of elite alpine skiers influence their slalom performance, Appl. Sci., 10, 7288.
- [14] 米山 猛,香川博之,立野大地,ネーサン・ス コット,長田和隆 (2007) スキーターン中のた わみと雪面接触圧力の測定,日本機械学会 [No.07-24] シンポジウム講演論文集: 336-341.